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Received July 7, 2006; accepted September 4, 2006
Published Online: February 22 2007

We use the phase space position-velocity (x, v) to deal with the statistical properties of
velocity dependent dynamical systems, like dissipative ones. Within this approach, we
study the statistical properties of an ensemble of harmonic oscillators in a linear weak
dissipative media. Using the Debye model of a crystal, we calculate at first order in
the dissipative parameter the entropy, free energy, internal energy, equation of state and
specific heat using the classical and quantum approaches. For the classical approach
we found that the entropy, the equation of state, and the free energy depend on the
dissipative parameter, but the internal energy and specific heat do not depend of it. For
the quantum case, we found that all the thermodynamical quantities depend on this
parameter.
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1. INTRODUCTION

Our foundation of classical and quantum statistical mechanics (Kubo, 1999)
is based on the Hamiltonian formalism (Goldstein, 1950) of conservative systems.
These systems are particular cases of much more general ones called autonomous
systems which are those where the total force acting on the particle does not depend
explicitly on time, otherwise they are called non-autonomous. For conservative
systems, the Hamiltonian is a constant of motion of the system, and, in princi-
ple, one can calculate all the thermodynamic characteristics of an ensemble of

1 Departamento de Fı́sica, Universidad de Guadalajara, Apartado Postal 4-137, 44410 Guadalajara,
Jalisco, México.
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udgserv.cencar.udg.mx

1100
0020-7748/07/0500-1100/0 C© 2007 Springer Science+Business Media, LLC



Statistical Physics on the Space (x, v) for Dissipative Systems and Study 1101

N particles governed by this Hamiltonian, through the acknowledge of its asso-
ciated partition function. For dynamical systems which depend explicitly on the
velocity, for example dissipative systems. There are mainly two approaches to
study these systems. The first one uses the kinetic equation (Vlasov or Boltzmann
equations) to find the density distribution and, then, to calculate the desired sta-
tistical property. The other one tries to find an effective or phenomenological
Hamiltonian and, then, to estimate the desired thermodynamic quantities from
the stationary statistical mechanics (statistical ensemble) (López et al., 1997).
This last approach is possible since for autonomous systems sometimes is pos-
sible to find time-independent constant of motion, Lagrangian, and Hamiltonian.
However, it is known that the Lagrangian and Hamiltonian formulation have
some problems. First, the Lagrangian (therefore the Hamiltonian) may not ex-
ist for some dynamical systems (Douglas, 1941). Second, There could be two
completely different Hamiltonians which describe the same classical mechan-
ical system, but completely different quantum and statistical systems (López,
2005). Third, time-explicitly dependent systems have an ambiguous Lagrangian
and Hamiltonian formulation (López and Hernández, 1989). Fourth, Ambiguity
Lagrangian and Hamiltonian formulation happens even for the harmonic oscilla-
tor (López, 1998, 2002) (where a problem of consistency of units arises). Finally,
there are autonomous systems where one can not have explicitly the Hamiltonian
of the system because the inverse relation v = v(x, p) can not be given from the
original definition of p = p(x, v) (López et al., 2004). This last problem happens
particularly on dissipative systems and is the main reason one would like to have
an alternative approach in mechanics (López et al., 1997), statistical and quantum
mechanics to deal with them.

In this paper, we take the original ideas of Maxwell in statistical mechan-
ics and Heisenberg in quantum mechanics to study these areas from the point
of view of coordinates and velocities rather than coordinates and generalized
linear momentum. We apply this approach to the ensemble of linear oscillators
within a linear dissipative media, and we will do this from the phenomenological
point of view and at first order in the dissipation parameter in the constant of
motion.

2. DYNAMICAL EQUATION IN THE SPACE (x, v)

In this section, we restrict ourselves to one-dimensional single particle mo-
tion to show the main ideas. The approach will be extended immediately to N
independent particles moving in a three-dimensional space. The equations of mo-
tion of a particle moving under a time-independent force can be written as the
following autonomous dynamical system

ẋ = v, (1a)
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and

v̇ = f (x, v)

m
, (1b)

where m is the mass of the particle, x and v represent its position and velocity,
and f (x, v) is the total force acting on the particle. A constant of motion of this
system is a function K(x, v) such that dK/dt = 0, that is, it satisfies the following
equation

v
∂K

∂x
+ f (x, v)

m

∂K

∂v
= 0.

Given this constant of motion, the Lagrangian of the system is given by Kobussen
(1979), (Leuber, 1981)

L = v

∫
K(x, v)

v2
dv + A(x)v,

where A(x) is an arbitrary function, and the term A(x)v represents the gauge of
the Lagrangian. Thus, the generalized linear momentum is given by

p = ∂L

∂v
, (4)

and it is here where our analysis starts. Suppose now that it is not possible to get
v = v(x, p) from (4). Then, the Hamiltonian of the system, H = vp − L(x, v),
can not be given explicitly, and it will be given in implicit form through the
constant of motion. Therefore, this constant of motion (with units of energy) can
help us to avoid this an other problems already mentioned in the introduction.

Consider N particles moving in the three-dimensional space and under a
time-independent force acting on them (autonomous system). The motion of these
particles is restricted on the hypersurface of the space �6N defined by the time-
independent constant of motion K(x, v), where x, v ∈ �3N . Thus, for a canonical
ensemble of N -particles , the classical partition function would be given by

Z = m3N

h3Nη

∫
e−βK(x,v)dxdv, (5)

where m is the mass of the particles, h is the Plank’s constant, η = 1 for distin-
guishable particles and η = N ! for non distinguishable particles, β = 1/kT with
k being the Boltzmann’s constant and T the temperature of the system, and dxdv
is the measure in the space �6N ,

dxdv =
3N∏
j=1

dxjdvj . (6)
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For a quantum canonical ensemble of N particles in a batch temperature T , the
quantum partition function would be

Z =
∑

i

ωie
−βEi , (6)

where ωi represents the degeneration of the eigenvalue Ei , where this eigenvalues
comes from the solution of the equation

K̂ (̂x, v̂)ψi = Eiψi. (8a)

K̂ , x̂ and v̂ are the Hermitian operator associated to the constant of motion K(x, v),
the position x, and the velocity v. ψi(x) is the eigenfunction which is related with
the wave function �(x, t) of the Schrödinger equation,

ih
∂�(x, t)

∂t
= K̂ (̂x, v̂)�i(x, t), (8b)

as

�(x, t) =
∑

i

Cie
−iEi t/hψi(x), (8c)

where |Ci |2 represents the probability that the system be on the state ψi . The
position and velocity operators are defined and related by the following expressions

x̂j = xj , v̂j = − ih

m

∂

∂xj

, [xl, v̂j ] = ih

m
δlj , [xi, xj ] = [vi, vj ] = 0. (8d)

In this way, with Eq. (5) and Eq. (7) it is possible, in principle, to study the
thermodynamic characteristics of an ensemble of N particles of any autonomous
system through the classical or quantum canonical partition functions. Of course,
this approach is reduced to that one of the Hamiltonian formalism whenever this
one exists explicitly (López et al., 1997). Note that the same approach can be
made for any other type of ensemble.

3. CONSTANT OF MOTION

In López (1996), a constant of motion Kα(x, v) was given for the dynamical
system

ẋ = v (9a)

and

v̇ = −ω2x − α

m
v, (9b)

where ω is the free natural frequency of oscillations, m is the mass of the particle,
and α is the coefficient of the dissipative force which arises phenomenologically as
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an average effect of the interaction with the particles of the medium. The constant
of motion of this system is given by

Kα(x, v) = m

2
(v2 + 2ωαxv + ω2x2)e−2ωαG(v/x,ω,ωα ), (10a)

where ωα and the function G are defined as

ωα = α

2m
, (10b)

and

G(ξ, ω, ωα) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2
√

ω2
α − ω2

ln

[
ωα + ξ −

√
ω2

α − ω2

ω2
α + ξ +

√
ω2

α − ω2

]
if ω2 < ω2

α

1
ωα + ξ

if ω2 = ω2
α

1√
ω2 − ω2

α

arctan

(
ωα + ξ√
ω2 − ω2

α

)
if ω2 > ω2

α

(10c)

This constant of motion has the following limit

lim
αto0

Kα(x, v) = K0(x, v) = 1

2
mv2 + 1

2
mω2x2. (11)

For very weak dissipation (ωα � ω) and at first order in ωα , the constant of motion
can be written as

K(x, v) = K0(x, v) + ωα

ω

[
mωxv − 2K0(x, v) arctan

(
v

ωx

)]
. (12)

In principle, one can get the Lagrangian of the system through the expression (3),
and from this Lagrangian one could get the generalized linear momentum of the
system p = p(x, v). However, it is not possible to know v = v(x, p), even for the
very weak dissipation case. Thus, the Hamiltonian is given implicitly through the
above constant of motion.

The quantization of (12) was carried out in López and López (2006), where the
modification of the eigenvalues of the harmonic oscillator (E(0)

n = hω(n + 1/2))
were given at first order in perturbation theory as

En(ω) = hω

(
n + 1

2

) (
1 − πωα

ω

)
− hω2

α

ω

[(
2

3
n + 1

4

)

−
∞∑
l=0

2l+1∑
s=0

( −1/2
l

)2 (
2l + 1

s

)2 (2n − 2l − s)2

(2l + 1)2(2l + 1 + s)

]
, (13)

where the correction has been made up to second order in ωα .



Statistical Physics on the Space (x, v) for Dissipative Systems and Study 1105

4. CLASSICAL APPROACH

Consider an ensemble of N particles moving independently which their
equation of motion is given by the following dynamical system

d

dt

(
xj

vj

)
=

(
0 1

−ω2
j

−α
m

)(
xj

vj ,

)
, j = 1, . . . , 3N (14)

where ωj is the natural free frequency of oscillations. The dissipative coefficient
is the same of all oscillators since they are inside the same medium. One can
think, for example, in a crystal which is inside a bosonic or fermionic medium
where the wave length of the particles of this medium is less than the separation
of the crystal components (Jones and March, 1985). The average interaction of
the crystal components with the particles of the medium may be modeled by
Eq. (14). In Astrophysics, one could think about the core of a neutron star as
a superconducting lattice of protons inside a dissipative medium generated by
the huge amount of neutrinos (antineutrinos) appearing from the weak decay of
neutrons and protons. Since the density in the core of these stars is very big
(1015 gr/cm3) (Fang and Ruffini, 1983; Özel, 2006) the interaction with neutrinos
(antineutrinos) is not so neglectful. Thus, maybe the local motion of an ensemble
of nucleons in the core could be model by Eq. (14).

Let us see first the implications of using classical canonical partition function
to study the thermodynamical characteristics of the system. To do this, let us make
the following change of variable

xj =
√

2Jj

mωj

cos φj , and vi =
√

2ωjJj

m
sin(φj ), (15)

where the variables φj and Jj have the following variation φj ∈ [0, 2π ] and
Jj ∈ [0,∞). Then, from (12), the jth-constant of motion and measure are given
with this coordinates as

Kj = ωjJj − ωαJj (sin 2φj − 2φj ), (15a)

and

dxjdvj = 1

m
dJjdφj . (15b)

In this way, the partition function (5) is written as (η = 1 since the particles in the
crystal are distinguishable)

Z = m3N

h3N

3N∏
j=1

∫
e−βKj (xj ,vj )dxjdvj =

3N∏
j=1

1

h

∫
e−βJj [ωj −ωα (sin 2φj −2φj ]dJjdφj

(16)
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Fig. 1. Function I (α/ω).

which can be integrated, bringing about the following result

Z =
3N∏
j=1

I (ωα/ωj )

βhωj

, (17a)

where the function I (ξ ) has been defined as

I (ξ ) =
∫ 2π

0

dφ

1 − ξ (sin 2φ − 2φ)
. (17b)

Figure 1 shows the behavior of this function as a function of ωα/ω. Note that I (0) =
2π , and that ωα/ω must be less than the unit, according to our approximations of
expression (5). From (17a), one gets

ln Z = −3N ln h +
3N∑
j=1

ln

(
I (ωα/ωj )

βωj

)
. (18)

Since N is big and there are 3N normal modes of oscillations in the crystal, one
can assume continuity in the frequency spectrum and write (18) as

ln Z = U0 +
∫ ∞

0
ln

(
I (ωα/ω)

βω

)
g(ω) dω, (19a)



Statistical Physics on the Space (x, v) for Dissipative Systems and Study 1107

where U0 has been defined as U0 = −3N ln h, and g(ω) is the density spectral
which must satisfied the condition∫ ∞

0
g(ω) dω = 3N. (19b)

Using the Debye’s model of solids (Wannier, 1966; Mc Quarrie, 1976; Huang,
1987; Pathrio, 1996; Toda et al., 1998; Schwabl, 2002), the spectral density is
given by

g(ω) =
⎧⎨
⎩

9Nω2

ω3
D

if 0 ≤ ω ≤ ωD

0 if ω > ωD

, (20a)

where ωD is the Debye’s frequency of the solid which is defined by the cutoff
frequency such that ∫ ωD

0
g(ω) dω = 3N. (20b)

and it is given by

ωD =
(

3N

4πV

)1/3

vc. (20c)

The variable V represents the volume of the solid, and vc is the average velocity
of the elastic waves in the solid which is given in terms of the longitudinal (vl)
and transversal (vt ) waves as

3

vc

= 2

v3
t

+ 1

v3
l

. (20d)

Substituting (20a) in (19a), it follows that

ln Z = U0 + 9N

ω3
D

∫ ωD

0
ω2 ln

(
I (ωα/ω)

βω

)
dω. (21)

In this way, one can calculate the thermodynamic characteristics of the system.
The internal energy of the system, its entropy, its specific heat, its equation of
state, and its free energy are given by

U = −∂ ln Z

∂β
= 3NkT, (22a)

S = k

[
U0 + 9N

ω3
D

∫ ωD

0
ω2 ln

(
I (ωα/ω)

βω

)
dω + 3N

]
, (22b)

CV =
(

∂U

∂T

)
V

= 3Nk, (22c)
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p = 3NkT

V
ln

(
I (ωα/ωD)

βωD

)
− 9N

V ω3
D

∫ ωD

0
ω2 ln

(
I (ωα/ω)

βω

)
dω, (22d)

and

F = −kT

[
U0 + 9N

ω3
D

∫ ωD

0
ω2 ln

(
I (ωα/ω)

βω

)
dω

]
. (22e)

As one can see, the internal energy and the specific heat of the ensemble of
oscillators do not depend on the dissipative media, at first order in the dissipation
parameter. We must remain here that the whole system is made up of the crystal
and the medium. So, in the above quantities one needs to add the contribution
coming purely from the medium. On the other hand, we have used the classical
canonical statistical partition function and the Debye’s model for our study of
the thermodynamic quantities of the system. However, this is somewhat a little
bite incorrect since Debye’s model works fine to relative low temperatures, and
classical canonical partition function is expected to work fine to relatively high
temperatures. Thus, let us make everything consistent by using quantum canonical
partition function.

5. QUANTUM APPROACH

In this case, using (7), (20a), the condition (20b), and the same hypothesis of
continuity in the frequencies, one has the following expression

ln Z = ln
3N∏
j=1

(∑
n

e−βEn(ωj )

)

=
3N∑
j=1

ln

(∑
n

e−βEn(ωj )

)
≈

∫ ∞

0
ln

(∑
n

e−βEn(ω)

)
g(ω) dω

= 9N

ω3
D

∫ ∞

0
ω2 ln

(∑
n

e−βEn(ω)

)
dω, (23)

Now, using (13) at first order in the dissipation parameter, one has

∑
n

e−βEn(ω) = λαe−βhω/2

1 − λ2
αe−βhω

, (24a)

where λα has been defined as

λα = eβπhωα/2. (24b)
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Thus, Eq. (23) is written in the following way

ln Z = 9N

ω3
D

∫ ωD

0
ω2 ln

(
λαe−βhω/2

1 − λ2
αe−βhω

)
dω. (25)

Therefore, the internal energy, the entropy, the specific heat, the equation of state
and the free energy of the system are given by

U = 9N

2ω3
D

∫ ωD

0
ω2(h ω − h ωαπ ) coth

(
β h ω

2
− β h ωαπ

2

)
dω , (26)

S = 9Nk

ω3
D

∫ ∞

0
ω2

[
ln

(
λαe−β h ω/2

1 − λ2
αe−β h ω

)

+ β

2
(h ω − h ωαπ ) coth

(
βhω

2
− β h ωαπ

2

)]
dω, (27)

CV = 9N

4kT 2ω3
D

∫ ω2
D

0

ω2(h ω − h ωαπ ) dω

sinh2
(

β h ω

2 − β hωαπ

2

) . (28)

p = 3NkT

V
ln

(
λαe−β hωD/2

1 − λ2
αe−β h ωD

)
− 9NkT

V ω3
D

∫ ∞

0
ω2 ln

(
λαe−β hω/2

1 − λ2
αe−βhω

)
dω,

(29)
and

F = −9NkT

ω3
D

∫ ∞

0
ω2 ln

(
λαe−β h ω/2

1 − λ2
αe−β h ω

)
dω. (30)

Figure 2 shows the variation of CV /Nk as a function of the temperature
for several values the dissipative parameter ωα . The effect at first order of the
dissipation is to increases the specific heat a low temperatures.

6. CONCLUSIONS

We have used the phase space (x, v) to study the statistical properties of an
ensemble of harmonic oscillators within a dissipative medium, where its effect on
the oscillators is to create a linear velocity depending force. We have made the
study at first order in the dissipation parameter for classical partition function and
quantum partition function, taking the Debye’s model of solids as an example for
possible applications. The classical canonical partition function lead us to have
an internal energy and specific heat which are independent on the dissipation.
However, quantum canonical partition function brings about dependence on the
dissipation for all thermodynamical variables of the system. It is our feeling that
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Fig. 2. Specific heat with θD = hωD/k = 150 K (corresponding to Sodium). (1): 150ωαπ /
ωD = 0.0, (2): 150ωαπ/ωD = 0.5, (3): 150ωαπ/ωD = 1.0, (4): 150ωαπ/ωD = 2.0, (5):
150ωαπ/ωD = 5.0, (6): 150ωαπ/ωD = 10.0.

the use of the space (x, v) for statistical physics studies has less restrictions that
the space (x, p).
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